Effect of electrolytes on CO-water mass transfer

نویسندگان

  • Haiyang Zhu
  • Brent H. Shanks
  • Theodore J. Heindel
چکیده

The influence of various electrolytes such as sulfate, nitrate, and chloride on CO-water mass transfer was investigated in this study. The results indicate that the enhancement in the CO-water volumetric masstransfer coefficient ranged from 1.5 to 4.7 times that of a baseline system without electrolytes, depending on electrolyte type and concentration. For those electrolytes with the same anions, copper-containing electrolytes provided stronger enhancement, whereas for those electrolytes with the same cations, sulfatecontaining electrolytes showed stronger enhancement. By measuring both the CO-water volumetric masstransfer coefficient (kLa) and the mass-transfer coefficient (kL), it was found that the electrolytes inhibit gas bubble coalescence. This leads to an increase in the gas-liquid interfacial area, resulting in CO-water masstransfer enhancement. In contrast, when MCM41 nanoparticles with or without functionalized mercaptopropyl groups were added to water, the mass-transfer coefficient and CO-water interfacial area were both increased.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Ambient Condition on the Shower Cooling Tower in Four Type of Climates Condition

Water cooling by ambient takes place with two mechanisms of heat and mass transfer. Using packings at wet cooling towers has disadvantages such as obstruction, reduction of life expectancy and production of algae and fungi. In shower cooling towers types of towers packings are completely removed and water intake is in direct contact and heat transfer takes place in two ways of latent and sensib...

متن کامل

An Investigation of Mass Transfer Phenomena during Osmotic Dehydration of Orange Slices

The osmotic dehydration causes water removing from food and also a soluble solid uptake into thefoodstuffs. However, large penetration of solute into the food becomes a major problem in osmoticdehydration.Pre-coating the food to be dehydrated with an artificial, edible barrier was also explored as a wayto efficiently hinder solute penetration. In this study the effect of edible coating (CMC),co...

متن کامل

An Experimental Study of the Effect of High Electric Field on Mass Transfer Enhancement

Applying corona wind as a novel technique can lead to a great level of heat and mass transfer augmentation by using a very small amount of energy. The enhancement of forced flow evaporation rate by applying electric field (corona wind) has been experimentally evaluated in this study. Corona wind produced by a fine wire electrode charged with positive high DC voltage impinges on water surface an...

متن کامل

Thermal performance enhancement of automobile radiator using water-CuO nanofluid: an experimental study

In the present paper, the effect of water-CuO nanofluid on the radiator heat transfer of an automobile, Peugeot 405 XU7 engine type is investigated experimentally. The experiments are carried out for the radiator water (water-ethylene glycol with a volume fraction of 80-20, respectively) as a base fluid and water-CuO nanofluid with the volume fraction of 0.5% and 1%. Sodium Dodecyl Sulfate (SDS...

متن کامل

The Experimental Study of Nanoparticles Effect on Thermal Efficiency of Double Pipe Heat Exchangers in Turbulent Flow

In this work, the characteristics of flow and heat transfer of a fluid containing nano particles of aluminum oxide with the water volume fraction (0.1-0.2-0.3)(V/V) percent of the reports. The overall heat transfer coefficient, heat transfer and the average heat transfer fluid containing nano water - aluminum oxide in a horizontal double pipe counter flow heat exchanger under turbulent flow con...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017